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Abstract  Flow cytometry is the most widely used method for the rapid enumera-
tion of cells suspended in fluid media. Because of its quantitative and multi-
parametric nature and operational throughputs of up to 50,000 cells/s, flow cytometry 
is considered the gold standard method for identifying cells within heterogeneous 
populations. Unfortunately, conventional flow cytometers are costly, mechanically 
complex, consume large sample and reagent volumes (due to the need to use sheath-
ing fluids), and require trained personnel for both operation and maintenance. To 
overcome these limitations, significant efforts have focused on miniaturizing and 
simplifying benchtop flow cytometers to realize microfluidic platforms able to sen-
sitively assay cells in a high-throughput manner. In this chapter, we present the key 
features and characteristics of microfluidic-based flow cytometers. We then detail 
the various methods employed to manipulate and focus cells within flowing streams. 
This is followed by a discussion of contemporary optical detection systems and how 
these may be integrated within microfluidic platforms. We emphasize the signifi-
cance and opportunities associated with imaging flow cytometry, detailing different 
imaging modes and how they may be used to enhance information content while 
maintaining high-throughput operation. To conclude, we explore the potential 
impact of emerging technologies, such as machine learning, in next-generation imag-
ing flow cytometry.
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1 � Conventional Flow Cytometry

Flow cytometry is the gold standard technique for enumerating cells, detecting bio-
markers, and sorting cells from heterogeneous populations, with utility in a wide 
range of biological and clinical applications. Although the hemocytometer, a 
nineteenth-century innovation, provides a manual means of estimating cell concen-
trations, its limited analytical throughput and inability to extract specific cellular 
characteristics prompted the need for more advanced methodologies [66]. In the 
mid-1960s, Kamentsky et al. presented a rapid cell spectrophotometer using absorp-
tion as detection method [51]. In the late 1960s, Göhde and colleagues developed an 
impulse fluorimeter using a fluorescence microscope for the analysis of DNA in 
single cells [16]. This instrument formed the basis for the earliest commercial flow 
cytometers, developed in the late 1960s and early 1970s. As noted, modern flow 
cytometers are versatile and powerful tools for the quantitative and high-throughput 
characterization of cells at the single-cell level. In its most common embodiment, a 
flow cytometer utilizes hydrodynamic focusing to manipulate cells into a single file 
stream that passes through an optical detection volume. Sensitive and high-
throughput optical analysis is normally achieved through the use of high-numerical 
aperture optics and photomultiplier tube (PMTs) detectors [38, 77]. As cells (or 
other micron-sized objects) pass through the detection volume, they can generate 
various optical signals, most notably forward scattered light (FSC), side scattered 
light (SSC), and fluorescence, which can then be used to assess cellular size, shape, 
morphology, granularity, and internal structure (Fig. 1).

The transferal and collection of optical signals at a photodetector is typically 
achieved using free-space optical components such as mirrors, lenses, and filters. 
The wavelength selectivity of a photodetector is most easily achieved by placing an 
optical filter in front of the detector, thus allowing only a user-defined range of 
wavelengths to be transmitted [23, 112]. While all flow cytometers are able to ana-
lyze both scattered light and fluorescence emission, fluorescence is most commonly 
used in biological applications. Here, a monochromatic laser is used to excite intrin-
sic or extrinsic fluorophores on or inside a cell. Fluorophores subsequently emit 
(red-shifted) fluorescence photons in an isotropic manner. These emitted photons 
are then discriminated from excitation photons using appropriate optics and detected 
using a PMT. Fluorescence detection is especially useful in identifying cell types 
based on surface marker expression, assaying DNA content, and assessing intracel-
lular signaling [81, 95]. Multiparametric measurements of single cells enable the 
detailed characterization of cellular component distributions or variations in the 
expression of genes for fluorescent proteins. In this regard, access to multiple (fluo-
rescence) detection channels is critical in allowing the investigation of complex 
cellular features [83].

Flow cytometers are able to operate at high analytical throughput, processing 
cells at rates up to 50,000 cells/s. This allows for the efficient analysis of large cel-
lular populations and the detection of rare cells within complex media. Importantly, 
flow cytometry is non-destructive, enabling the recovery or selection of cells from 
heterogeneous populations if integrated with a sorting capability. 
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Fig. 1  Schematic illustrating the working principle of an optical flow cytometer. Sample contain-
ing cells or particles is injected into a sheath fluid at a slightly higher pressure than the sheath fluid. 
Hydrodynamic focusing creates a laminar sample flow where cells move in a single file within the 
sheath fluid. The sample stream is directed toward an optical detection volume. One or more laser 
sources are used to provide collimated excitation light, which is either absorbed (and subsequently 
re-emitted as fluorescence) or scattered by the cells as they move through the probe volume. 
Optical filters and/or dichroic mirrors are used to selectively transmit or block emitted fluorescence 
or scattered light. Photodetectors, normally photomultiplier tubes, capture these optical signals and 
convert them to electronic signals. Data processing/analysis is then used to simultaneously extract 
multiple parameters at the single-cell level. (Reprinted with permission from Hoogendoorn [43])

Fluorescence-activated cell sorters (FACS) integrate a sorting modality within a 
standard flow cytometer and enable the sorting of heterogeneous cell populations 
into pure sub-populations after their passage through the detection volume. In a 
typical embodiment, the cell stream is broken into small droplets that contain single 
cells. These droplets are electrostatically charged and then manipulated by a pair of 
electrically charged deflection plates. In theory, cells may be sorted at throughputs 
of between 104 and 105 cells/s, although practical constraints normally limit sorting 
rates to between 103 and 104 cells/s. This added capability makes flow cytometry a 
particularly versatile tool in biomedical research and clinical diagnostics, in appli-
cations such as immunology, hematology, cancer diagnostics, and drug discovery 
[63]. Indeed, flow cytometry has become indispensable in the diagnosis of blood 
cancers [35], the phenotyping of T cells [88], the detection of rare cells [30] and the 
rapid analysis of bacteria [75]. Unsurprisingly, flow cytometers generate enormous 
amounts of data, which are typically presented as multidimensional scatterplots or 
histograms.
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Despite its central role in cellular analysis, flow cytometry is not without its limi-
tations. Conventional flow cytometers are expensive, have large footprints (hinder-
ing their use outside of the laboratory), consume large volumes of sample and 
reagent, and require trained personnel for both operation and maintenance [106]. To 
address these issues, recent attention has focused on the development of microflu-
idic flow cytometers, with a view to realizing the sensitive and rapid analysis of 
single cells while minimizing sample/reagent volumes and instrumental foot-
prints [83].

2 � Microfluidic Flow Cytometry

As noted, microfluidic flow cytometers offer a number of significant features not 
accessible to conventional flow cytometers. These include the precise manipulation 
of micron-sized species particles in a sheathless manner [90], the ability to process 
sub-microliter sample and reagent volumes, and the direct integration with down-
stream analytical processing [106]. These benefits have ensured that microfluidic 
flow cytometers have emerged as innovative tools for cellular analysis in a range of 
applications [83].

Microfabrication techniques are fundamental in the creation of microfluidic flow 
cytometers. Of particular note is soft lithography [108]. Soft lithography is an 
umbrella term describing the molding of a soft material (such as an elastomeric 
polymer) by a lithographic master. Due to their simplicity and accessibility, soft 
lithographic methods have been used to fabricate microfluidic systems for a wide 
range of applications. The most common substrate material used in soft lithography 
is polydimethylsiloxane (PDMS). PDMS is biocompatible and possesses excellent 
optical, mechanical, and electrical properties [93]. Significantly, a range of detec-
tion modalities can be integrated or used with PDMS. For example, various optical 
components, such as air mirrors, air lenses, and optical fibers, can be integrated 
within microfluidic substrates [37]. As discussed, lenses and mirrors are used to 
focus and direct optical signals, and are essential components in flow cytometers 
[10, 87]. They improve the signal-to-noise ratio (SNR) associated with optical sig-
nals by reducing optical losses. Empty microchannels can be repurposed and tai-
lored to accommodate optical fibers, enabling a facile connection between optical 
sources, samples, and detectors [37]. For example, Golden and co-workers inte-
grated multiple optical fibers within a microfluidic flow cytometer, enabling the 
simultaneous detection of multiple parameters [26]. In a similar fashion, Mao et al. 
integrated four optical fibers within their microfluidic flow cytometer to link a sin-
gle excitation light source with three optical detectors for FSC, SSC, and fluores-
cence detection [65].

The most obvious feature of a microfluidic device is its small size, which is criti-
cal for in-the-field or point-of-care use [21]. That said, true system portability relies 
on the integration and miniaturization of detectors (discussed below) and pumps. 
Membrane-based micromixers, microvalves, and micropumps are cost-effective 
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solutions for fluid manipulation [4]. These systems, typically made from PDMS, 
comprise two microfluidic layers; a pneumatic control layer and a fluid flow layer 
separated by an elastic membrane. This construct allows for controlled deflection of 
the control layer membrane against the fluidic layer, generating a peristaltic effect 
that propels fluid along the microchannel from inlet to outlet. Unfortunately, such 
components rely on external pneumatic actuation, which significantly impacts the 
instrumental footprint and limits device portability. Accordingly, the development 
of miniaturized pneumatic control systems for valve/pump operation is essential. In 
this regard, Chia et al. introduced an elastomeric thermal valve utilizing a heating 
electrode for control. This approach simplifies the external support architecture, but 
the use of high temperatures does pose a risk when processing biological species 
[12]. Alternatively, Takayama et al. presented an off-chip pneumatic control micro-
valve using inkjet printer needles as actuators. While interesting, the fixed position 
of the printer needle restricts flexibility in microvalve positioning within the micro-
fluidic device [31].

Finally, electronically actuated micromixers, microvalves, and micropumps 
avoid the need for bulky external pneumatic control system and thus enhance the 
potential for out of laboratory use. Significantly, a range of microfabrication meth-
ods can be used to integrate electrodes into microfluidic devices and provide for 
electrical connection between on-chip components, such as active mixers, valves 
and pumps, and the outside world [91, 115].

3 � Microfluidic Cell Focusing

Perhaps the most important part of the flow cytometry workflow is the focusing and 
alignment of cells. Ideally, all cells within a sample should be made to move along 
a defined trajectory that intersects with the optical probe volume. While traditional 
hydrodynamic focusing remains the most popular option for aligning and focusing 
cells, a number of alternate and “sheathless” strategies have been introduced [14]. 
These methods minimize sample and reagent waste, are easy to establish and reduce 
particle acceleration through the optical probe volume. As previously noted, effi-
cient cell focusing is crucial in optimizing the performance of a microfluidic flow 
cytometer. The ideal focusing method should ensure that each cell moves along a 
fixed trajectory through the optical probe volume and that only one cell is present 
within this volume at any time. The efficiency of particle focusing techniques can be 
assessed by measuring optical signals originating from standard particles (of known 
size) as they transit the detection volume, which is typically reported as either a full 
width half maximum (FWHM) or coefficient of variation (CV) of the focused par-
ticle profile. We now discuss the two most commonly used focusing techniques: 
hydrodynamic focusing and sheathless focusing [104].
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3.1 � Hydrodynamic Focusing

Hydrodynamic focusing is an effective technique for cell focusing in microfluidic 
flow cytometers, taking advantage of laminar fluid flow to precisely position cells or 
particles within a narrow flowing stream [100]. The method involves “squeezing” a 
cell suspension (sample) flow within a sheath fluid to create a narrow, single-file 
stream of adjustable width. In this way, the sample stream velocity increases, and 
thins to maintain a consistent flow rate, while the sheathing streams decelerate and 
become wider. Hydrodynamic focusing in microfluidic channels is normally 
achieved through the utilization of sheath flows that flank a central sample stream 
[26] (Fig. 2a). Such schemes are versatile and compatible with a wide range of cell 
types and sizes, making them popular in microfluidic flow cytometry platforms 
[102]. It is important to recognize that hydrodynamic focusing can be implemented 
in either two or three dimensions, with the sheath fluid partially (laterally) or com-
pletely surrounding the sample stream. When using planar, single layer microfluidic 
systems, 2D focusing is used to direct the sample stream into a vertical element. 
Conversely, conventional flow cytometers employ 3D focusing. This significantly 

Fig. 2  Microfluidic cell focusing geometries. (a) 2D hydrodynamic flow focusing at a Y-Junction. 
Here a sheath flow is used to confine and focus cells in a microfluidic channel. (b) Inertial focusing 
using a multi-square contraction-expansion motif. Here, multiple contraction-expansion regions 
are employed within the channel to manipulate the flow and focus cells based on their size. (c) 
Inertial Dean flow focusing in spiral geometries. Inertial forces cause cells to migrate to specific 
equilibrium positions within the curved channel. Dean forces, generated by the concave structures 
in the spiral channel, facilitate particle focusing. (d) Inertial focusing within a serpentine channel. 
Serpentine curved channels with alternating turns can be easily parallelized, and by introducing 
asymmetry in the curvature (through different widths or radii of curvature), focusing similar to that 
in spiral channels can be achieved. (e) Combination of Dean and Y-junction sheath flows. This 
method combines the effects of Dean flows and sheath flows to achieve more precise and con-
trolled focusing of cells within microfluidic channels. (f) Elasto-Inertial particle focusing within a 
rectangular straight channel. Elasto-inertial focusing utilizes a combination of elastic and inertial 
forces to focus particles or cells within a straight channel

S. D. Ivetich et al.



221

enhances analytical sensitivity and ensures that cells move in a consistent manner 
through the optical probe volume [26]. However, as noted previously, conventional 
flow cytometers require excessive volumes of sheath fluid and necessitate the fabri-
cation of multiple ports for sample and sheath fluid injection.

3.2 � Inertial Focusing

The use of inertial forces to focus cells at high volumetric flow rates is advantageous 
since focusing is relatively insensitive to fluctuations in input flow rates. Inertial 
focusing is passive in nature, simply relying on control of flow-induced lift forces to 
both focus and space particles within defined trajectories. It’s is simple to establish, 
has inherently high throughput, and does not require the use of sheath flows [29]. 
Significantly, the elimination of a sheath fluid enhances portability and reduces the 
cost of a flow cytometer. Inertial focusing can be realized in rectangular [46], square 
[13], triangular [54], or semicircular [53] cross section channels (Fig. 2b). However, 
the exact longitudinal placement of particles within a single sequential train requires 
additional forces since inertial focusing in the aforementioned structures yields 
multiple equilibrium positions across the channel cross section. Precise longitudinal 
control can be accomplished through the use of Dean-drag forces in curved [80, 
105] (Fig. 2c), 2D [9] (Fig. 2d), or 3D spiral channels [8, 53], or via sheath flows 
(Fig. 2e). The integration of both sheath and Dean flows yields superior focusing 
and control of particle spacing compared to approaches that rely solely on Dean 
flows [57, 64]. An excellent diagnostic application of inertial focusing was reported 
by Ozkumur and co-workers in their CTC-iChip [79]. This platform aimed to effi-
ciently capture and isolate circulating tumor cells (CTCs) from blood samples, uti-
lizing inertial microfluidics to manipulate magnetically tagged cells into a (near) 
single file stream so that they can be precisely deflected and isolated using minimal 
magnetic force. The CTC-iChip device allowed for the isolation of rare CTCs from 
a confounding background of other blood cells, holding much promise for cancer 
diagnosis and monitoring. However, it should be noted that inertial focusing sys-
tems demand high flow rates and sometimes complex microchannel designs to 
ensure efficient focusing. This issue is recognized to be a bottleneck in imaging 
flow cytometry (iFC) due to the rapid signal processing requirements [42].

3.3 � Viscoelastic Focusing

As noted, inertial focusing schemes allow for precise cell manipulations but require 
the use of relatively high volumetric flow rates. An alternative strategy involves 
leveraging the rheological properties of the carrier fluid to generate both inertial and 
elastic forces, which can be used to focus cells at lower volumetric flow rates [116]. 
Put simply, by tuning the rheological properties (and flow conditions) of 
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non-Newtonian fluids, cells and particles may be focused into single file streams at 
the channel centerline [58, 110, 114]. Significantly, viscoelastic fluids can be used 
to manipulate cells at flow rates as low as a few microliters per hour. When elastic 
lift forces are accompanied by inertial lift forces (elasto-inertial regimes) [59], 
effective focusing of cells and particles may be realized (Fig. 2f) at velocities as 
high as mL/s [42, 109, 113]. The interplay between elastic and inertial forces allows 
for precise manipulation and focusing across a wide range of flow rates, therefore 
expanding the potential applications of particle manipulation techniques.

4 � Detection Systems for Microfluidic Flow Cytometers

Extraction of cellular information can be realized in a variety of ways, almost all of 
which are based on optical techniques. In the following sections, we describe of 
how light is made to interact with cells and how their responses are measured and 
recorded. Unsurprisingly, the choice of detection method has a significant impact on 
the overall design and structure of the microfluidic platform, noting that it is com-
mon for more than one detection technique to be used at the same time [101]. In 
addition, some detection methods may require the use of labels to probe cellular 
structure or composition, while others, such as electrical impedance, operate in a 
label-free manner. Finally, flow cytometers can be broadly categorized as being 
either “single point” or “imaging” in nature. Single point flow cytometers (spFCs) 
incorporate a single detection point (or volume) to analyze cells within a single file 
flow, whereas imaging flow cytometers (iFCs) combine the high-throughput capa-
bilities of single-point flow cytometry with the imaging capabilities of an optical 
microscope.

4.1 � Single Point Flow Cytometers

4.1.1 � Optical Detection Systems

SpFCs incorporate a single optical detection volume to probe flowing cells in a 
sequential manner [28]. This approach, introduced previously, is employed in 
almost all commercial flow cytometers and has been adopted in a wide range of 
microfluidic flow cytometers. Several studies have reported powerful microfluidic 
spFCs, with the following studies showcasing some key advancements. For exam-
ple, Xun et al. reported a sheathless microfluidic cytometer employing geometric 
confinement to focus white blood cells (WBCs), with both side scattered light and 
fluorescence detection capabilities [111]. Such an approach provided for low coin-
cidence error rates, while its simple construction and sheath-free operation rendered 
it suitable for point-of-care use. Jiang  et  al. developed a microfluidic cytometer 
utilizing electrokinetically induced pressure-driven flow and dual-wavelength 

S. D. Ivetich et al.



223

fluorescence detection to simultaneously enumerate two different fluorescent parti-
cle populations, achieving a throughput of approximately 20–40 particles/s [49]. 
While the throughput is modest, such an approach effectively mitigates the draw-
backs associated with pressure-based pumping methods. In addition, the use of two 
photodetectors significantly reduces both reagent and sample usage. Shi and co-
workers developed a microfluidic platform for WBC  detection using a four-part 
differential count, enabling the detection of lymphocytes, monocytes, neutrophils, 
and eosinophils [96]. Here, the selective staining of WBCs in blood samples was 
achieved through the application of three different fluorophores, with WBCs being 
detected by measuring fluorescence at wavelengths above 600 nm, and identifica-
tion of subtypes being achieved by concurrent measurement of red and green fluo-
rescence (between 520 and 550 nm). Significantly, data obtained from microfluidic 
cytometer were in close correspondence with data from conventional laboratory 
tests, while consuming only 5 μL of blood. In a related work, Simon et al. presented 
a microfluidic device that enabled simultaneous (multi-frequency) impedance and 
optical signal measurements for leukocyte differentiation in whole blood, with leu-
kocyte subpopulation analysis achieved through the measurement of immunofluo-
rescence signals from stained cells [97]. Importantly, the device was capable of not 
only identifying WBCs, but also platelets, erythrocytes, granulocytes, monocytes, 
and lymphocytes. However, no additional preparation steps, beyond diluting whole 
blood, were needed to perform a complete blood count. To address analytical 
throughput, Fan et al. reported a microfluidic device that incorporated 32 detection 
channels, 64 sheath flow channels, and a high refractive index microball lens array 
for high throughput multicolor fluorescence detection. Using such a system, the 
authors demonstrated a throughput of 358,400 cell/s [119].

Finally, it should be noted that in many microfluidic flow cytometers, optical 
components are located outside of the microfluidic device itself. While the use of 
(external) free-space optics can simplify device design, such systems tend to be 
costly and less well suited for in-the-field or point-of-care applications. Accordingly, 
a more cost-effective and flexible solution involves the integration of optical fibers 
or waveguides into the device [27, 65, 92]. Integration of these elements enables 
facile connection of the microfluidic system with external optical components and, 
as a result, reduces cost and enhances portability.

4.1.2 � Impedance Detection Systems

In addition to optical detection systems, electrical detectors have long been used in 
Coulter counters to detect, enumerate, and size cells [2]. Such detectors can be eas-
ily integrated into microfluidic systems offering the possibility of label-free detec-
tion of cells in a high-throughput manner. While a number of microfluidic impedance 
cytometers have been demonstrated, they commonly employ co-planar electrodes, 
which can lead to measurement variations due to the generation of non-uniform 
electric fields [72, 118]. Such position-dependent impedance signals arise because 
cells or particles may follow different trajectories and thus interact differently with 
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electric fields within the detector. Accordingly, the implementation of particle 
focusing techniques, such as those described previously, becomes crucial in mitigat-
ing signal variations.

Impedance detection is the most popular electrical detection method in electrical 
flow cytometry. It relies on the measurement of the current flowing between two 
electrodes, with signals being dependent on the impedance of the particles flowing 
between them. Put simply, as cells move along a microchannel, they displace the 
surrounding electrolyte, and cause measurable fluctuations in electrical impedance. 
Importantly, impedance variations can be directly related to cellular properties such 
as size, volume, and dielectric constant. Accordingly, measurement of impedance 
variations offers insights into cell dimensions, shape, morphology, and physiologi-
cal attributes (such as membrane integrity). This in turn allows discrimination of 
cells with similar geometry and size but different internal composition [39]. An 
early example of microfluidic impedance cytometry was presented by Karen et al. 
who employed two frequencies to differentiate between differently sized micro-
beads and various types of red blood cells [52]. Specifically, a low frequency signal 
was used as a reference, with a second frequency being used to differentiate between 
differently sized microbeads and intact, fixed, or lysed red blood cells. In related 
work, Chen et al. used impedance amplitude ratios and transit times to distinguish 
between different cell types [11]. Specifically, such an approach enabled a 93.7% 
success rate in distinguishing between osteoblasts and osteocytes, whereas differen-
tiating between similarly sized wild-type and drug-resistant breast cancer cells was 
realized at a success rate of 70.2%. Interestingly, this type of detection method has 
been also used to distinguish neural stem cells and characterize two distinct tumor 
cell types [117]. Both aforementioned studies incorporate constriction channels 
(with a channel diameter to cell diameter ratio equal to or lower than one) to deform 
cells as they pass through the channel and ensure single-file cell flow. While the use 
of constriction channels is advantageous, for  preventing current leakage during 
impedance measurements and introducing an additional variable for cell classifica-
tion, the elongation length, they are susceptible to clogging. To address this issue, 
impedance-based cytometers comprising parallel-electrode configurations have 
been developed. Such formats improve reliability (by preventing channel blockage) 
and enhance versatility in cell classification, and typically incorporate one or more 
pairs of electrodes positioned along the top and bottom of a microchamber [22].

5 � Microfluidic Imaging Flow Cytometers

The lack of imaging information afforded by single-point detection schemes is a 
significant limitation of conventional flow cytometers. Accordingly, there is a rec-
ognized need for platforms that combine the high-throughput capabilities of con-
ventional flow cytometry with the imaging abilities associated with optical 
microscopy. Fortunately, in recent years, developments in high-speed optical imag-
ing technologies have engendered significant improvements in both temporal and 
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spatial resolution, circumventing many of the technical issues associated with low 
camera frame rates and reduced sensor sensitivities [69]. We now describe some of 
the most important recent advances in iFC. For simplicity, we categorize such flow 
cytometers on the basis of the imaging method, namely those incorporating photo-
detectors and those integrating cameras; the main difference being that in 
photodetector-based systems, images are reconstructed from single point signals, 
whereas in camera-based systems, images are recorded without the need for any 
post-processing [98].

5.1 � Camera-Based Imaging Flow Cytometers

The incorporation of a camera into a flow cytometer provides many benefits when 
compared to point-based detection schemes. That said, the ability to image cells at 
high throughput is far from simple. In this regard, mitigation of optical blurring is 
the primary challenge since cells are almost always moving at high linear velocities. 
The first commercial iFC, the ImageStream®, introduced by Amnis Corporation in 
2005, addressed this issue by employing an epifluorescence excitation scheme and 
time delay and integration (TDI) cameras [6]. Such an approach enabled high-
resolution multichannel imaging capabilities, but with a modest analytical through-
put of less than 5000 cells/s (Fig.  3a). TDI imaging is a method that involves 
electronically panning the detector to effectively track object motion. In TDI, the 
sensor accumulates signal information from not just a single row of pixels at a time, 
but from multiple rows simultaneously, providing enhanced sensitivity. This accu-
mulation helps in capturing a composite image of a moving object with reduced 
motion blur, as each row of pixels adds information about the object’s position over 
time. By continuously shifting the accumulated charge from individual pixels, TDI 
compensates for the motion of the object being imaged, allowing for the detection 
of weak signals without the motion blur that is caused by increases in exposure 
time. Spectral decomposition enables the simultaneous acquisition of 12 images per 
cell [5].

Although the ImageStream® platform has shown its utility in various biological 
applications, including cell-cycle analysis and apoptosis detection [82] it is com-
plex, bulky, expensive, consumes enormous volumes of sheath fluid, and requires 
trained personnel for operation and maintenance. Fortunately, the basic principles 
that underpin  iFC  are well suited to operation within microfluidic formats. For 
example, Di Carlo and co-workers developed a label-free, high-speed IFC platform 
integrating an inertial microfluidic device to analyze red blood cells and leukocytes 
at throughputs of approximately 28 million cells/s [46]. The sheathless device uti-
lizes a single inlet, branching into 256 channels in which cells are positioned and 
spatially ordered by inertial forces. While the platform highlighted the potential of 
chip-based IFC, poor brightfield imaging resolution reduced its utility in morpho-
logical or multi-parametric imaging studies. To overcome this limitation, Holzner 
et al. developed an optofluidic flow cytometer that combines a refractive microlens 
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Fig. 3  Camera-based IFCs. (a) Schematic of the optical system within an ImageStream® flow 
cytometer. Cells labeled with fluorescent markers are hydrodynamically focused within the flow, 
and multiple laser lines are utilized to excite fluorescence. Using several imaging objectives with 
different magnification, brightfield, side scatter (SSC), and fluorescence images are captured and 
then transferred to a filter stack where each color is projected to a spatially discrete channel on the 
cameras. This method enables the collection of up to 10 fluorescence colors aligned spatially, so 
each probe is measured for intensity, morphology, and relative location to other probes. (Reproduced 
with permission from Cytek Corporation). (b) Schematic of a microfluidic platform for iFC  based 
on inertial focusing and stroboscopic illumination. The system comprises an inlet port (blue), 
parallel channels for sheathless inertial cell focusing (orange), a detection area for multiparametric 
acquisition (green), and an outlet port for cell collection (gray). The grayscale image reports HL60 
cells moving at a velocity of 0.35 m/s and using a stroboscopic pulse length of 10 μs. (Reprinted 
with permission from Rane et al. [85]. Copyright 2017 Cell Press). (c) Schematic of a microflu-
idic iFC  based on elasto-inertial focusing and stroboscopic illumination. The platform integrates 
multi-color light sheet illumination, an elasto-inertial cell focusing system, a dual-color beam 
splitter, and a CMOS camera. Cells are imaged upstream of the outlet using a light sheet excitation 
beam, allowing the acquisition of multi-color and brightfield images. (Reprinted from Holzner 
et al. [41]. Copyright 2021 Elsevier). (d) An iFC plarform  integrating a mirror on the side of a 
microfluidic channel to position a light sheet parallel to the imaging plane. Comparison of Euglena 
gracilis microalgae images acquired using wide-field and light-sheet excitation. (Reprinted with 
permission from Miura et  al. [73]. Copyright 2018 OSA Publishing). (e) Virtual Freezing 
Fluorescence Imaging Flow Cytometry. Inset shows that VIFFI is able to generate blur-free images 
of cells that would otherwise be blurred. (Reprinted with permission from Mikami et  al. [71]. 
Copyright 2018 Springer Nature). (f) Representative fluorescence images of HT-29 cells acquired 
by VIFFI. Green, EpCAM-FITC; red, PpIX; blue, CD45-PE; scale bar, 20 μm; arrow, flow direc-
tion (1 m. s−1). (Reproduced from Matsumura et al. [67] with permission from the Royal Society 
of Chemistry)
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array with an array of parallel microfluidic channels for imaging cells at through-
puts of up to 50,000 cells/s [40]. Results demonstrated that the optofluidic platform 
can efficiently count and magnify cells up to four times achieving an improvement 
in imaging resolution. Alternatively, Schonbrun and co-workers reported a micro-
fabricated device integrating diffractive microlenses for imaging cells at a through-
put of 2275 cells/s using brightfield microscopy [94]. However, the limited focal 
range of these lenses have restricted their utility to brightfield imaging of cells with 
diameters less than 6 μm and at relatively low throughputs.

A universal issue faced when performing fluorescence microscopy is the trade-
off that exists between signal acquisition time and image quality/brightness. 
Unsurprisingly, this issue is exacerbated when the sample under investigation is 
moving during the imaging process. A number of studies have attempted to lessen 
the impact of this trade-off. For example, Rane and co-workers reported an ultra-
high throughput iFC platform incorporating inertial focusing for sheathless manipu-
lation of cells and stroboscopic illumination for blur-free fluorescence imaging of 
cells moving at high linear velocities [85]. By controlling both the applied volumet-
ric flow rate and the camera frame rate, the platform was capable of imaging cells at 
throughputs as high as 96,000 cells/s while demonstrating fluorescence imaging at 
throughputs in excess of 50,000 cells/s. Importantly, the method is multi-parametric 
in nature, providing for brightfield, darkfield, and multi-color fluorescence imaging 
(Fig. 3b). Based on these capabilities, the platform was used to perform both high-
throughput cell cycle and apoptosis studies. Whilst this approach afforded high-
throughput operation, image resolution was poor. To address this issue, the same 
group subsequently reported a related microfluidic platform for high-throughput 
imaging of cells with (near to) diffraction limited imaging resolution [41]. To 
engender acquisition rates in excess of 60,000 cells/s (fluorescence) and 400,000 
cells/s (brightfield), the authors combined stroboscopic illumination with elasto-
inertial cell focusing, demonstrating enhanced control of both cell velocities and 
trajectories within the detection probe volume (Fig. 3c). Critically, this innovation 
enabled high-throughput investigations of phase-separated sub-cellular components 
and the screening of rare events at the sub-cellular level. In related studies, Miura 
and colleagues reported a light-sheet fluorescence IFC based on integrated micro-
mirrors [73]. Here light sheet excitation parallel to the imaging plane is used to 
increase excitation efficiencies by an order of magnitude compared to conventional 
wide-field excitation approaches. Specifically, the excitation beam was strobed at a 
rate that matched the average cellular velocity (approximately 1 m/s), yielding an 
extrapolated maximum throughput of 10,000 cells/s (Fig. 3d).

An alternative method able to capture images of cells moving at high speed is 
Virtual Freezing Fluorescence Imaging Flow Cytometry (VIFFI), developed by 
Mikami and co-workers (Fig. 3e). VIFFI is an optomechanical imaging method that 
enables high-throughput acquisition of high-quality cell images by “virtually” 
freezing the motion of rapidly moving cells on a CMOS image sensor, effectively 
increasing exposure times by up to three orders of magnitude [71]. VIFFI has been 
used to perform rare cell detection of HT-29 cells spiked into peripheral blood 
mononuclear cell suspensions at rates of approximately 750 cells/s [67] (Fig. 3f).
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5.2 � Photodetector-Based Imaging Flow Cytometers

An excellent example of a PMT-based iFC  was reported by Goda and associates, 
who developed an ultrafast and continuous imaging method known as 
STEAM.  STEAM employs a detector array in conjunction with optoelectronic 
image-encoding and decoding techniques, to allow for high-throughput image-
based screening at speeds approaching 100,000 cells/s [24]. The cytometer was 
used to identify rare mammalian cells (MCF7 cells tagged with 1 μm metal beads 
linked to specific antibodies) within blood samples. The method demonstrated 
exceptional sensitivity and was capable of detecting a single labeled MCF7 cell in 
the presence of a million WBCs, with a false-positive rate two orders of magnitude 
lower than that observed when using conventional fluorescence flow cytometry. 
However, it should be noted that this brightfield imaging method utilizes relatively 
long excitation wavelengths. Furthermore, and in a similar manner to the classical 
optical imaging modalities, the image quality of STEAM, characterized by image 
resolution and image contrast, is still compromised by the high imaging speed. 
Consequently, the practical application of STEAM has mainly focused on high-
speed screening of target cells labeled with contrast agents [25]. To address these 
challenges, Tsia and colleagues introduced an innovative imaging technique known 
as asymmetric-detection time-stretch optical microscopy (ATOM) (Fig. 4a) [107]. 
ATOM excels at capturing label-free images with high contrast and sub-cellular 
resolution, and even at flow velocities in excess of 10 m/s. Unsurprisingly, the imag-
ing throughput of ATOM is exceptionally high, exceeding 100,000 cells/s for con-
sistently spaced cell streams [107]. Unlike conventional time-stretch imaging, 
which relies on all-optical image encoding and retrieval via ultrafast broadband 
laser pulses, ATOM enhances imaging performance by intensifying the image con-
trast of unlabeled or unstained cells. Interestingly, the same researchers have since 
applied ATOM to high-throughput screening and classification of phytoplankton 
based on variations in intracellular texture and morphology (Fig. 4a) [56].

Several recent reports have provided alternative solutions to the challenge of cel-
lular imaging at high speeds. Notably, Diebold et al. developed an imaging tech-
nique that achieves real-time pixel readout rates significantly higher than those of 
traditional cameras, by mapping images into the radiofrequency domain using digi-
tally synthesized optical fields [15] (Fig. 4b left panel). Such an approach, chris-
tened f﻿﻿luorescence imaging using radiofrequency-tagged emission or FIRE, allows 
for blur-free fluorescence imaging of cells moving at a speed of 1 m/s, resulting in 
an analytical throughput of 50,000 cells/s (Fig. 4b right panel). While this technique 
showcases the potential of high-speed fluorescence imaging, its practical use is lim-
ited by the complexity of the optical detection system, and its low sensitivity. In a 
related work, Goda and co-workers reported a frequency-division multiplexing con-
focal fluorescence microscope capable of imaging at frame rates of up to 16,000 
frames/s [70]. This system showcased its utility in biomedical applications, includ-
ing 3D confocal fluorescence imaging of motile microalgal cells and 2D confocal 
fluorescence IFC of white blood and microalgal cells at flow rates of up to 2 m/s. 
Using a simpler optical set up, Han et al. used a spatial-temporal transformation 
(using mathematical algorithms and a specially designed spatial filter) to furnish a 
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Fig. 4  Photodetector-based  iFCs. (a) Schematic of an optofluidic time-stretch imaging system 
for iFC. Reconstructed images from a time stretch experiment of phytoplankton cells are shown on 
the right-hand side. (Reprinted with permission from [56] Copyright 2016 Optical Society of 
America). (b) Illustration depicting how FIRE may be used for blur-free fluorescence imaging of 
cells. Representative FIRE images of cells moving at a velocity of 1 m/s captured with a 10 μs 
exposure and images of individual cells recorded with an EMCCD flowing at the same velocity are 
shown on the right-hand side. Scale bar: 10 μm. (Reprinted with permission from [15]. Copyright 
2013 Springer Nature). (c) Schematic of an iFC system equipped with a spatial filter. Time-domain 
PMT output signal, alongside the corresponding restored and resized fluorescence image, with the 
latter depicting the actual size of the cell are shown on the right-hand side. (Reprinted with permis-
sion from [33]. Copyright 2013 Springer Nature)

conventional flow cytometer with imaging capabilities (Fig. 4c) [33]. Using PMT 
detectors, high quality fluorescence and scattering images of rapidly moving cells 
could be obtained at throughput of approximately 1000 cells/s.

6 � Three-Dimensional Imaging Flow Cytometry Via 
Light-Sheet Fluorescence Microscopy

A key limitation associated with conventional iFCs is that, regardless of the detec-
tion methodology employed, only two-dimensional (2D) cell images are obtained. 
While highly useful in a range of clinical applications, the ability to extract 
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three-dimensional (3D) images of single cells can often be critical in cell phenotyp-
ing studies, where sub-cellular components are often distributed throughout the 
entire cell volume. For example, if a fluorescent structure is observed at the center 
of a cell when performing conventional (2D) imaging, its true location (for example, 
in the membrane, cytosol, and nucleus) remains ambiguous. Accordingly, when per-
forming internalization measurements, co-localization studies, and spot counting, 
only 3D images can provide a complete and accurate assessment of organelle loca-
tion and morphology [45].

Light-Sheet Fluorescence Microscopy (LSFM) is an imaging technique that pro-
vides high-resolution, 3D images of biological species. Unlike traditional micros-
copy, LSFM employs a thin sheet of laser light to illuminate the sample. This thin 
sheet of light is oriented orthogonally to the imaging plane, creating a well-defined 
“light sheet.” Selective plane illumination microscopy (SPIM) is a light-sheet 
microscopic technique that uses a focused light sheet to illuminate the specimen 
from the side [99]. This enables continuous imaging of the illuminated plane while 
capturing sequential images as the sample traverses through the plane. By either 
moving the sample or the light sheet through the sample, multiple two-dimensional 
images can be acquired at various depths. Subsequently, these images can be com-
bined to reconstruct a high-resolution, three-dimensional image of entire biological 
species. Unsurprisingly, light-sheet microscopy has become an increasingly popular 
imaging technique due to its ability to provide excellent resolution images at high 
penetration depths.

Simultaneous cell counting and visualization of fluorescently labeled subcellular 
mitochondrial networks in HeLa cells have been achieved using light sheet-
based  iFC [86] (Fig.  5a). This system images species flowing through a PDMS 
microfluidic channel, allowing for single-shot scanning of cells moving at flow rates 
between 100 and 1000 nl/min. Interestingly, the microfluidic device was oriented at 
120° from the excitation arm to ensure that scattered light does not enter the detec-
tor and thus enhances signal-to-noise ratios. In related work, Han and co-workers 
reported a high-throughput 3D iFC  imager based on optical sectioning microscopy 
[34] (Fig. 5b). Here, orthogonal light-sheet scanning illumination was combined 
with spatiotemporal transformation detection to generate 3D cell images from 
single-pixel photodetector readouts. Specifically, the approach allowed the capture 
of both 3D fluorescence and label-free side-scattering images of single cells moving 
at a velocity of 0.2 m/s, corresponding to a throughput of approximately 500 cells/s, 
with a spatial resolution of less than 1 micron in all dimensions. Moreover, Ugawa 
et al. developed a parallel high-throughput 3D-iFC technique, based on light-sheet 
microscopy [103] (Fig. 5c). This method enables fast, parallel optofluidic scanning 
of cells by performing 1D acoustofluidic focusing of multiple cells under wide-field 
light-sheet microscopy with a single objective lens. Significantly, the approach 
allows for multicolor 3D imaging in flow and with an analytical throughput exceed-
ing 2000 cells/s. Additionally, it facilitates large-scale 3D-morphology-based flow 
cytometric analysis of populations in excess of 105 cells. Finally, it should be noted 
that subcellular structures can be imaged at high throughput, thereby providing 
valuable cellular information that would often be overlooked when using traditional 
2D-imaging cytometry techniques.
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Fig. 5  Three-dimensional imaging flow cytometry. (a) Images of HeLa cells acquired at variable 
flow rates and a frame rate of 300 frames/s obtained using light sheet-based iFC. (Reprinted with 
permission from Regmi et al. [86]. Copyright 2014 AIP Publishing). (b) Illustration of how mul-
tiple scans can be used to produce a 2D profile in the yz plane as an object moves along the y-axis. 
Each section, separated by dotted lines, corresponds to the light intensity of one row in the 2D 
image stack. When an object completely traverses the spatial filter, the time-domain signal con-
tains the complete information of the 3D profile in xyz space. (Reprinted from Han et al. [34]. 
Copyright 2019 Optica Publishing Group). (c) Schematic of the optical construction of a parallel 
3D-iFC, featuring a remote objective (on the right-hand side) combined with a tilted mirror to 
transform oblique plane images into the lateral plane. The resulting converted image is projected 
onto a CMOS sensor. A 3D reconstructed image derived from high-throughput imaging of K562 
cells deposited in a glass-bottomed well. The green and blue colors represent CFSE and DAPI 
fluorescence, respectively, with a close-up of a single cell in the bottom right. (Reprinted with 
permission from Ugawa and Ota [103]. Copyright 2022 Wiley-VCH GmbH)

7 � Machine-Learning Assisted Imaging Flow Cytometry

IFC has been shown to be a powerful technology for image-based analyses of non-
adherent cells at high throughput. It enables comprehensive analysis and in-depth 
imaging of each cell within a large population and allows the extraction of morpho-
logical profiles in a direct manner. Interestingly, traditional data analysis methods in 
flow cytometry normally rely on manual gating, a process whereby the user manu-
ally defines regions of interest within data plots to identify unique sub-populations 
of cells [61]. While this approach has its merits and uses, it comes with several limi-
tations. Most notably, manual gating relies on subjective judgment to define or iden-
tify sub-populations. In addition, as datasets grow in size, manual analysis becomes 
time-consuming and impractical [48]. Indeed, iFC  experiments almost always con-
tain enormous amount of imaging data, and thus manual data analysis/processing is 
far from simple. Accordingly, the use of artificial intelligence (AI) and machine 
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learning (ML) algorithms to process and analyze iFC data is both needed and has 
the potential to transform the utility of  iFC in a range of biological and clinical 
applications.

Unsurprisingly, ML algorithms are already being used to good effect in iFC  and 
have been shown to provide more objective, consistent, and precise information 
[84]. In simple terms, machine learning is a branch of AI that uses algorithms and 
statistical models to learn from and make predictions or decisions based on previ-
ously recorded data. Unlike traditional programming methods, where explicit 
instructions are used to solve a problem, ML systems are designed to learn and 
improve their performance over time through the analysis of large datasets. Such a 
learning process involves the identification of patterns, relationships, and trends 
within datasets, which can then be applied to new and unseen data to make informed 
predictions or decisions [7]. With the rapid development of deep learning, a subfield 
of ML, the emergence of convolutional neural networks (CNNs) has revolutionized 
the field by offering a highly effective means to address complex learning tasks. 
Neural networks (NNs) are machine learning algorithms, inspired by the structure 
and function of biological neural circuits (populations of neurons interconnected by 
synapses), consisting of interconnected nodes (artificial neurons) organized into 
layers [1]. The input layer receives data, which is then processed through one or 
more hidden layers, with the output layer finally producing a prediction or classifi-
cation. During training, NNs learn from data by adjusting the weights of connec-
tions between neurons, optimizing their ability to make accurate predictions or 
classifications for various tasks, including image analysis.

In the context of iFC, ML algorithms can be trained to automatically recognize 
and classify cell populations, detect anomalies, or extract valuable insights from 
complex multidimensional datasets, ultimately enhancing the efficiency and accu-
racy of the data analysis process. A generic workflow involves imaging cells of 
interest as they move through the detection volume of the flow cytometer. The 
detected image is then processed (ideally in real time) using a moving-object detec-
tion algorithm. This allows cells to be tracked and identified. Gathered images are 
segmented into individual pixels, creating a grayscale pattern that represents the 
detected cells against the background. This pattern is then analyzed and processed 
further to identify and track the cells of interest within the flow. Once completed, 
identification through ML can occur [62]. A particularly important clinical applica-
tion of ML is in diagnostics (Fig. 6a). Cell-based diagnostic methods traditionally 
rely on the measurement of signals derived from specific biomarkers. These bio-
markers could be proteins, DNA or RNA fragments, or other cellular components 
indicative of certain diseases or physiological states. However, in multiplexed 
assays, where multiple markers must be assessed simultaneously, the challenge 
often lies in the manual comparison and analysis of these various markers. This 
process involves examining multiple signals within a single sample, requiring time-
consuming manual analysis and specialized software tools for interpretation. 
Interestingly, recent studies indicate that label-free imaging methods (e.g., bright-
field and darkfield imaging) may be excellent substitutes for fluorescence. However, 
efficient extraction of phenotypical data requires complex image analysis. Classical 
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image analysis pipelines use predefined features as machine classifiers, which limits 
accuracy. In contrast, deep neural networks offer enhanced flexibility and improved 
accuracy by autonomously learning relevant patterns from extensive datasets. Their 
strength lies in their ability to automatically extract hierarchical and abstract fea-
tures from raw data, allowing them to discern complex patterns that might be chal-
lenging for other algorithms or manual analysis.

CNNs are increasingly being used for single cell analysis and classification. For 
example, Meng et al. achieved high-accuracy identification of various cell types, 
including THP1, MCF7, MB231, and PBMC, using label-free imaging [68]. In 
another study, Göröcs and co-workers used phase-contrast color image reconstruc-
tion techniques to detect plankton in natural water samples (Fig. 6b), demonstrating 
the versatility of CNNs in image-based identification tasks within environmental 
contexts [32]. In addition, Eulenberg et  al. successfully differentiated different 
phases of the Jurkat cell cycle, achieving a global accuracy of around 98.73% 
(Fig. 6c), underscoring the efficacy of CNNs in precise cell cycle stage recogni-
tion [20].

The integration of AI with cellular screening also has the potential to revolution-
ize the way we analyze and understand cells and tissues, leading to new discoveries 
and improvements in healthcare [55]. The analysis of cell morphology holds 
immense potential for discerning various cell types, states, and disease markers, 
opening up the field of blood-based diagnostics. In this regard, brightfield and dark-
field  iFC are emerging as powerful tools for classifying  WBC types [60, 74] 
(Fig. 6d), and aiding in acute lymphoblastic leukemia diagnostics via residual CNN 
architectures [18]. Furthermore, morphology-based identification has proven 

Fig. 6  Machine Learning Microfluidic Flow Cytometry. (a) Comparison of high-throughput cell-
based diagnostic workflows based on either conventional or AI-aided workflows. (Reprinted with 
pression from Doan and Carpenter [17] Copyright 2019 Springer Nature). (b) Phase-contrast color 
image reconstruction techniques can be employed to detect and identify plankton in natural water 
samples. (Reprinted with permission from Gӧrӧcs et al. [32]. Copyright 2018 Springer Nature). (c) 
Representative images depicting cell cycle stages captured via brightfield, darkfield, and fluores-
cence imaging alongside “confusion matrices” demonstrating deep learning classification for these 
stages. (Reprinted with permission from Eulenberg et al. [20]. Copyright 2017 Springer Nature). 
(d) Comparison of average WBCs counts from 85 unstained blood donors with the WBC count 
range being obtained from images collected via iFC. (Reprinted with permission from Nassar et al. 
[74]. Copyright 2019 International Society for Advancement of Cytometry)
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valuable in differentiating aggregated platelets from single platelets and  WBCs, 
exhibiting high specificity and sensitivity [50]. Additionally, Doan et al. utilized iFC 
and deep learning to distinguish clinically relevant red blood cell morphologies 
associated with cell storage lesions [19]. The application of deep learning to iFC 
data shows immense promise for various clinical image classification tasks [89]. 
Finally, portable  iFC has been integrated with CNNs to perform label free 
morphology-based diagnosis of cancer cells, in diseases such as Sézary syn-
drome [78].

Recently, Goda and co-workers demonstrated a real-time cell sorting instrument, 
combining high-throughput microscopy and real-time decision-making using a 
deep CNN thus enabling “intelligent image-activated cell sorting” [76]. This system 
involves a collection of individually complex operations such as 3D hydrodynamic 
focusing supplemented with acoustic focusing on a glass microfluidic chip, 
frequency-division multiplexed microscopy, a dual-membrane piezo push-pull cell 
sorter, and deep-learning-based image analysis for real-time sorting. The power of 
this approach was demonstrated by showcasing the sorting of microalgal and blood 
cells on the basis of subcellular protein localization and intercellular interactions. 
The same research group recently reported a modified version of this setup, utilizing 
a distinct imaging approach known as VIFFI [47].

In conclusion, advancements in both ML software and iFC hardware continue 
apace and will undoubtedly impact cell morphology analysis in clinical diagnostics, 
allowing for more accurate and faster classification with minimal human intervention.

8 � Conclusions and Future Directions

While flow cytometry is undeniably an established and ubiquitous experimental tool 
in cellular analysis, we hope that the current discussion has highlighted that the 
technology set continues to develop apace. In particular, the adoption of microflu-
idic formats has begun to transform both analytical throughput (cells analyzed per 
unit time) and accessible information content. The transition from conventional for-
mats to chip-based systems has proved to be both simple and empowering. For 
example, the adoption of chip-based flow cytometers ensures that integration with 
both up-stream and downstream functional components is simple. In addition, and 
as previously discussed, the implementation of microfluidic formats enables cell 
focusing (an essential component of the flow cytometry workflow) to be performed 
in a sheathless manner, through the use of inertial and viscoelastic forces. This 
simple modification engenders enormous enhancements in analytical throughput, 
minimizes sample and reagent consumption, and provides for exceptional control 
over cellular trajectories. Finally, it should also be remembered that the use of pla-
nar, chip-based formats ensures that a variety of optical (and electrical) detection 
schemes can be integrated with ease, providing for multiparametric analysis.

More excitingly, the adoption of microfluidic platforms has catalyzed the rapid 
development of iFC . As discussed, iFCs combine the high-throughput capabilities 
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of conventional flow cytometry with the imaging abilities associated with optical 
microscopy and enable high-throughput and high-information content analyses of 
heterogeneous cellular populations. While iFCS is a relatively nascent technology, 
it has already demonstrated extensive utility in cell biology and clinical diagnostics. 
Indeed, iFC is expected to make significant contributions to large-scale multi-
parametric cell analysis, leading to a deeper understanding of cellular behavior in 
the context of a certain disease. Put simply, in disease diagnostics, there is a recog-
nized need for simple imaging methods able to classify cells without relying on the 
pathologist’s objectivity. For example, the early diagnosis of cancer is a key deter-
minant of patient outcome. Hematological malignancies manifest themselves in the 
blood and are therefore amenable to blood-based diagnostics. Traditionally, such 
diagnostic procedures rely on manual microscopical evaluation of blood cell mor-
phology and suffer from subjectivity, limited throughput, and low sensitivity. The 
integration of iFC and ML  can be used for morphology-based diagnosis of hema-
tological malignancies, with identified blood cell sub-populations correlated with a 
specific disease state being used to train convolutional neural networks and create 
predictive models able to classify individual cells (as being healthy or diseased) 
[78]. Such an approach circumvents the challenges involved in defining molecular 
diagnostic markers and resurges morphology-based diagnosis of diseases through 
automated, efficient, rapid, and economic workflows.

While much progress is being made in “intelligent” flow cytometry, it should be 
remembered that the ability to collect and analyze extremely large numbers of 
(high-resolution) cell images is key to classifying diverse cell profiles without the 
need for predefined disease markers. Sophisticated deep learning models (particu-
larly those tailored for object image recognition) can be used to enhance classifica-
tion accuracy, but large datasets are normally needed to train such classifiers [36]. 
This presents numerous challenges. First, constructing labeled image datasets 
requires substantial input from clinicians so as to ensure accurate labeling aligns 
with morphological features. Second, such manual annotation becomes a time-
consuming bottleneck in the IFC workflow due to the vast volume of data involved. 
To address this challenge, multiple instance learning, an extension of supervised 
learning, can be employed. In multiple-instance learning, disease annotations (e.g., 
“healthy” or “diseased”) are assigned to a group of observations rather than indi-
vidual observations. Multiple-instance learning is particularly appealing for bio-
medical image analysis, since clinical annotations characterize groups of 
observations. Interestingly, multiple-instance learning has already been success-
fully applied to cancer detection in histopathology imaging [44], where only the 
whole slide-level information is provided, as well as in the analysis of proteomic 
profiles of cell sub-populations associated with disease status [3].

To conclude, it is evident that the transition from conventional (capillary-based) 
formats to chip-based microfluidic formats has transformed both the performance 
and applicability of flow cytometry in a range of biological and clinical problems. 
Today, flow cytometers need not be expensive, complex, and large-footprint instru-
ments that must be housed in central facilities and operated by trained personnel, 
but rather can be cost effective, portable, parallelized tools that can be implemented 
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in a variety of out-of-lab environments and provide high-quality biological informa-
tion from complex cellular samples.

9 � Multiple Choice Questions

	1.	 Which of the following is true for flow cytometers that incorporate sheath fluid?

	A.	 The pressure in the sample fluid is higher than in the sheath fluid.
	B.	 The pressure in the sample fluid is lower than in the sheath fluid.
	C.	 The pressure in the sample fluid is equal to that in the sheath fluid.
	D.	 The lowered sample pressure ensures a single file flow of cells.

	2.	 What is a key challenge associated with microfluidic flow cytometry?

	A.	 Sample throughput is limited.
	B.	 Integrating multiple detection methods is difficult.
	C.	 Microfluidic formats are incompatible with fluorescence detection schemes.
	D.	 The high costs associated with device fabrication.

	3.	 What is a current challenge associated with microfluidic imaging flow cytometry?

	A.	 Poor compatibility of microfluidic devices with fluorescence imaging.
	B.	 Difficulty in performing real-time imaging when operating at high throughput.
	C.	 Difficulty in analyzing rare cells in a heterogeneous population.
	D.	 Lower sensitivities when compared to traditional flow cytometry.

	4.	 Why does the use of a microfluidic platform enhance imaging accuracy in imag-
ing flow cytometry?

	A.	 Cells can be manipulated more easily than in conventional systems.
	B.	 Sample viscosity is increased.
	C.	 Imaging speed is reduced.
	D.	 Optical resolution is improved.

	5.	 What is meant by “gating” in flow cytometry?

	A.	 The process by which cells are introduced into the flow cytometer.
	B.	 The process by which cells are isolated within the optical detection volume.
	C.	 An electronic window that separates sub-populations of cells within a larger 

population.
	D.	 The process by which cells are delivered to different outlets in a flow 

cytometer.
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10 � Answers

	1.	 A
	2.	 B
	3.	 B
	4.	 A
	5.	 C
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