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ABSTRACT: Covalent organic frameworks (COFs) are commonly
synthesized under harsh conditions yielding unprocessable powders.
Control in their crystallization process and growth has been limited to
studies conducted in hazardous organic solvents. Herein, we report a
one-pot synthetic method that yields stable aqueous colloidal solutions
of sub-20 nm crystalline imine-based COF particles at room temperature
and ambient pressure. Additionally, through the combination of
experimental and computational studies, we investigated the mechanisms
and forces underlying the formation of such imine-based COF colloids
in water. Further, we show that our method can be used to process the
colloidal solution into 2D and 3D COF shapes as well as to generate a
COF ink that can be directly printed onto surfaces. These findings
should open new vistas in COF chemistry, enabling new application areas.

■ INTRODUCTION

Covalent organic frameworks (COFs) are porous crystalline
materials generated from organic molecules linked via reversible
covalent bonds.1 Since its discovery, COF chemistry has
facilitated a modular construction of periodic crystalline matter
by connecting molecular subunits in a predictable and modular
fashion.2 This strategy has proved efficient in generating
extended crystalline and porous networks possessing permanent
porosity, high specific surface areas, and excellent thermal/
chemical stability, features that have found potential applica-
tions in a vast number of fields.3 However, conventional routes
for COF synthesis involve high temperatures, which when
combined with the low solubility of the initial building blocks in
common reaction media, yield poor control over the size of the
crystalline domains and the morphology of COF crystals.4

Unsurprisingly, such drawbacks have hampered the extraction of
reliable information regarding the effects of crystallite size and
morphology on COF properties. Accordingly, much effort is
now focused on both understanding and controlling the growth
of COF crystals at length scales spanning from the nanometer to
micron scales.
Recently, Dichtel and co-workers reported on the preparation

of stable particles of boronate ester-linked COFs, whose size can
be modulated between 40 and hundreds of nanometers by using
mixtures of organic solvents at high temperature.5 Later, such
COFs colloidal solutions in organic media have been used by the
same authors for preparing micron-sized single crystals of

boronate ester-linked COFs via a seeded growth procedure.6

Therefore, having access to nanometer-sized particles of COFs
allowed the authors to overcome a long-standing challenge in
the field, that is, the formation of large single crystals of COFs.
Besides this specific example, COF crystal-downsizing will be
key to transforming COFs from unprocessable crystalline
powders into processable materials, integrating COFs into
nanoscale devices,7 and establishing relationships between COF
crystal size and properties. In addition, COF crystal downsizing
will expand the range of applications of these materials, such as
in the biomedical, device and printing arenas,8 and enhance their
bioavailability.9 However, only nanoparticles of boronate ester-
linked COFs in organic solvents have been reported so far.5

Unfortunately, boron-based COFs have poor chemical
stabilities, which limit their practical implementation. In
addition, the fact that hazardous organic solvents are still
required as a medium to stabilize their colloidal dispersion
precludes their use in biological environments. In contrast,
imine-based COFs are significantly more stable and robust for
practical use.10 Nevertheless, despite the high number of reports
on imine-based COFs, it has not been possible yet to downsize
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them to the nanoscale.11 Put simply, routes for producing
aqueous colloidal solutions of imine-linked COF nanoparticles
are still missing.
To overcome this limitation, we report here an efficient one-

pot method to generate stable and homogeneous colloidal
solutions of sub-20 nm imine-linked COF particles in water. The
synthesis of crystalline COF colloids was performed for the first
time at room temperature using micelles as reaction nano-
compartments. This approach was inspired by living systems
that make use of confined volumes (such as intracellular
compartments) to control crystallization processes in aqueous
media.12−16 This method allowed us to use a combination of
experimental scattering techniques in solution that, together

with computational calculations, gave unprecedented insights
into the mechanism and forces underlying the formation of
imine-linked COFs. Additionally, we show that the produced
colloids enable the processing of COFs into 2D and 3D shapes
such as crystalline freestanding films and monoliths. Further, we
prove that such colloids can also be used as inks to directly print
COFs onto surfaces. Finally, we demonstrated the generality of
our method by applying it to the synthesis of metal−organic
framework (MOF) colloids. In particular, we show the synthesis
of 20 nm MIL-100(Fe) particles at room temperature and
ambient pressure. MIL-100(Fe) is a prototypical MOF that
requires harsh conditions for its synthesis17 and only forms
larger crystals.18 We expect that the presented methodology will

Figure 1. TAPB-BTCACOF nanoparticles. (A) Schematic representation of the synthesis of colloidalTAPB-BTCACOF nanoparticles in water. (B)
Photograph of the transparent reaction mixture. (C) Synchrotron X-ray differential diffraction data of the reaction mixture containing TAPB-BTCA
COF nanoparticles. Experimental differential data obtained after subtracting the data corresponding to the solventmixture to that collected on reaction
mixture containing TAPB-BTCA COF nanoparticles are shown in red, with the calculated fit using P3, a ≈ 15.91 Å and c ≈ 3.54 Å as refined cell
parameters in blue and associated residuals in green with Rp and Rwp values of 16.3% and 13.7%, respectively. (D) Cryo-TEM image of TAPB-BTCA
COF colloid. For clarity, some TAPB-BTCA COF nanoparticles are outlined in green and some micelles are indicated by orange arrows. (E) HR-
TEM image of a TAPB-BTCA COF nanoparticle along the [-211] zone axis, with the inset showing the FFT. (F) Magnified HR-TEM image of a
defined area in (E) overlaid with the schematic structural model of TAPB-BTCA COF along the [-211] projection.
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vastly increase knowledge on structure−property correlations in
COFs and MOFs, allowing access to a large number of new
applications and functions while significantly enhancing the
bioavailability and processability of these materials.

■ RESULTS AND DISCUSSION
TAPB-BTCACOF is typically obtained via imine condensation
between 1,3,5-tris(4-aminophenyl)benzene (TAPB) and 1,3,5-
triformylbenzene (BTCA) in meta-cresol or DMSO. Addition-
ally, acetic acid is used as a catalyst to yield TAPB-BTCA COF
as an insoluble and unprocessable crystalline powder.19 Herein,
we employed the catanionic micellar system20,21 formed from a
mixture of cationic hexadecyltrimethylammonium bromide
(CTAB) and anionic sodium dodecyl sulfate (SDS) surfactants
(CTAB/SDS 97:3) to generate stable colloidal solutions of
crystalline TAPB-BTCA COF nanoparticles in water (Figure
1A). Note that this surfactant ratio guarantees the formation of
small mixed micelles in the catanionic mixture instead of bigger
vesicles as previously reported,20 and here it was optimized to
achieve the smallest size of colloidally stableTAPB-BTCACOF
nanoparticles (Figure S1). The micellar medium allows the
solubilization in water of the otherwise insoluble molecular
building blocks BTCA andTAPB at room temperature, yielding
two homogeneous solutions of the reactants loaded into CTAB/
SDS mixed micelles.22 After mixing the solutions and adding
acetic acid, the reaction mixture turned orange, indicating the
formation of imine bonds characteristic of TAPB-BTCA COF
growth. However, and in contrast to observations in standard
synthetic protocols, the reaction mixture remained clear and
homogeneous with no apparent precipitation (Figure 1B), even
after storage at room temperature for six months. Indeed, when
irradiated with a laser (λ = 630 nm), the reaction mixture clearly
exhibited Willis−Tyndall scattering behavior,23 confirming the
presence of colloidal particles (Figure S2). To validate the
existence of crystalline TAPB-BTCA COF nanoparticles in the
reaction mixture, synchrotron X-ray diffraction measurements
were performed directly on the colloidal solution generated after
mixing. The experimental differential diffraction data were fitted
using the Le Bail method24,25 against the reported structural
model forTAPB-BTCACOF (P3, a≈ 15.91 Å and c≈ 3.54 Å as
refined cell parameters) (Figure 1C), demonstrating the
presence of the crystalline COF phase with a main low-angle
peak centered at q = 0.46 Å−1 associated with the (100) Bragg
reflection.19 Accordingly, this result unambiguously confirmed
the formation of crystalline TAPB-BTCA COF nanoparticles
via the mixed micelle method. The sizes and morphology of the
obtained TAPB-BTCA COF nanoparticles were subsequently
studied by dynamic light scattering (DLS) and cryogenic
transmission electron microscopy (cryo-TEM). DLS measure-
ments conducted on the reaction mixture after 24 h (Figure
S3A) reported a monodisperse distribution of scatterers
centered at 16 nm. Remarkably, the colloidal behavior of the
reaction mixture remains stable and homogeneous (with no
appreciable turbidity or size increase) for periods in excess of six
months (Figure S3B). Additionally, cryo-TEM images of the
reaction mixture after 24 h (Figure 1D) showed two different
populations of objects; one centered at 5± 1 nm and the other at
16± 1 nm in diameter. The former value correlated well with the
size of surfactant micelles determined by small-angle X-ray
scattering (SAXS) in the pure CTAB/SDS (97:3) mixture (see
below and Figure S4), with the latter comparing well with the
size distribution measured by DLS, and thus being ascribed to
TAPB-BTCA COF nanoparticles. The high-resolution trans-

mission electron microscopy (HR-TEM) study of drop cast
reaction mixtures further confirmed the crystallinity of TAPB-
BTCA COF nanoparticles. Figure 1E shows a characteristic
HRTEM image and its corresponding fast Fourier transform
(FFT). The measured periodicities (white arrows in Figure 1E)
match well with the unit cell geometry of TAPB-BTCA COF as
viewed along the [-211] zone axis. Figure 1F presents a
magnified detail of the above HR-TEM image overlapped with
the simulated crystal structure of TAPB-BTCA COF viewed
along the [-211] zone axis, suggesting a goodmatch between the
light and dark fringes of themicrograph and the higher and lower
atomic density regions of the COF structure. Additionally,
scanning electron microscopy (SEM) images of drop cast
reaction mixtures revealed the presence of well-defined and
uniform nanoparticles (and nanoparticle clusters), with a size
that correlates well with both DLS and cryo-TEM measure-
ments (Figure S1A).
After confirming that sub-20 nmTAPB-BTCACOF particles

can be generated, we investigated the possibility of isolating the
COF material as a bulk solid. To this purpose, we added ethanol
to the reaction mixture to destabilize the surfactant aggregates,26

which triggered the flocculation of TAPB-BTCA COF nano-
particles as an insoluble yellow powder, hereafter termedTAPB-
BTCACOF(s). After flocculation,TAPB-BTCACOF(s) could
be simply isolated from the reaction mixture by centrifugation.
TAPB-BTCA COF(s) were characterized by Fourier-transform
infrared (FT-IR) spectroscopy and solid-state cross-polar-
ization/magic angle spinning nuclear magnetic resonance (13C
CP-MASNMR). FT-IR spectra confirmed the presence of imine
bonds through the appearance of the characteristic imine C=N
stretching band at 1623 cm−1 (Figure S5), while solid state 13C
CP-MASNMR spectra exhibited the representative signal of the
imine carbon atom at 157.1 ppm (Figure S6). Additionally,
powder X-ray diffraction (PXRD) patterns of TAPB-BTCA
COF(s) (Figure S7) were in excellent accordance with those
previously reported for this material.19 It should be noted that
the measured PXRD peaks were broader than those usually
observed for TAPB-BTCA COF(s) prepared by conventional
bulk synthetic methods,11 suggesting the presence of smaller
crystalline domains in TAPB-BTCACOF(s).27 The permanent
porosity of TAPB-BTCA COF(s) was also confirmed by
nitrogen adsorption isotherm measurements on previously
activated samples, showing a characteristic isotherm with a
Brunauer−Emmet−Teller (BET) area (ABET) of 687 m

2 g−1 at
77 K (Figure S8). Finally, the CO2 and water sorption properties
of TAPB-BTCA COF(s) were also measured (Figures S9 and
S10). It was found to be porous to CO2 with a total uptake of 9
mmol g−1 at 203 K and 760 Torr (1 mmol g−1 at 298 K and 760
Torr). Moreover, water-vapor sorption isotherms showed a step
between 40 and 50% relative humidity, after which the water
uptake increasedmonotonically until a maximumof 15% inmass
(0.15 gwater gCOF

−1), which is the typical behavior for this class of
materials bearing hydrophobic walls.11

To clarify the processes underlying the formation of TAPB-
BTCA COF nanoparticles in the catanionic micellar medium,
time-resolved in situ DLS and SAXS experiments were
performed. DLS indicated that the average hydrodynamic
diameter of colloidal particles increased during the first few
hours (after the addition of acetic acid), leveling off to yield a
final average hydrodynamic diameter of 16 nm (Figure S11). In
contrast, when the synthesis was performed in pure CTAB
micelles (i.e., without SDS), the size of TAPB-BTCA COF
continued to increase until precipitation occurred. Accordingly,
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the role of the anionic surfactant was clearly evidenced, with
SDS reducing the electrostatic repulsion of CTAB heads in the
micellar aggregates (i.e., decreasing the surface energy) and
favoring the formation of assemblies with lower curvatures.21,28

This is demonstrated by the increase in size of the nanoparticles
when increasing the amount of SDS in the CTAB/SDS mixture
(Table S1). In addition, the decrease in curvature caused by SDS
facilitates the colloidal stabilization of COF oligomers and of the
final TAPB-BTCA COF nanoparticles even over extended
periods of time. Time-resolved SAXS experiments provided
further insights into the growth mechanism of TAPB-BTCA
COF nanoparticles. SAXS spectra of the two micellar solutions
containing the TAPB and BTCA precursors (in the presence of
acetic acid) indicated the existence of 4.8 ± 2 nm diameter
ellipsoidal micelles, comparable to what it was observed in pure
CTAB/SDS (97:3) solutions (Figure S4). These data indicate
that solubilization of COF precursors has a negligible effect on
the size and shape of the CTAB/SDS micellar aggregates.
However, after mixing the two micellar solutions loaded with
COF precursors, clear changes in the SAXS profiles were
observed as a function of time. Scattering profiles at selected

reaction times (5, 13, and 21 h) are shown in Figure 2, along with
their best fits obtained from the used scattering model (further
details are provided in Supporting Information). These three
SAXS spectra describe three different regimes during the
progress of the reaction (Figure 2A−C and Figure S12). At
short reaction times (5 h in Figure 2A), SAXS profiles fit well to a
disk-particle model with a radius of 6.4 nm and a thickness of
0.354 nm, which corresponds to a single layer of bare TAPB-
BTCA COF (Figure S13A and Table S2). As the reaction
proceeded (13 h in Figure 2B), SAXS data showed a significant
increase in intensity at low values of the scattering vector (q < 1
nm−1), together with the appearance of a broad feature around 2
nm−1, suggesting changes of electron density contrast (further
discussion on the particle models used for the analysis of the
SAXS data, including details of the fitting procedure are
provided in the Supporting Information).29 This spectrum
could then be better fitted to a COF-core@double-shell disk
model, with a core thickness of 0.91 nm corresponding to a
three-layered TAPB-BTCA COF stack surrounded by
surfactant molecules (Figure S13B and Table S2). At longer
reaction times (21 h in Figure 2C), the SAXS profile showed a

Figure 2. Growth of TAPB-BTCA COF nanoparticles. (A, B, C) SAXS spectra of the reaction mixture at 5, 13, and 21 h, respectively. Experimental
data (symbols) and best fits to the used scattering model (line). The insets illustrate the species measured at the three different regimes, with yellow
disks representing the TAPB-BTCA COF core, red cylinders the hydrophobic tails of the surfactants, and blue spheres their polar heads. (D, E, F)
Snapshots of TAPB-BTCA COF assemblies comprising 1, 3, and 10 layers, respectively, after CG-MD simulation in water. (G) Total interaction
energy (sum of solute−solute + solute−solvent + solvent−solvent interaction terms) between the COF layers normalized per-COF layer, ΔETOT/N,
calculated from the MD simulations of TAPB-BTCA COF assemblies in water (red) and hexadecane (black). Energy of a single layer set to 0 as
reference in the plot. The ΔETOT/N becomes more and more favorable while the number of layers in the COF stacking increases, evidence of
cooperativity.
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marked change at q < 1 nm−1, with a clear slope variation at 0.5
nm−1. This spectrum could also be described using a COF-
core@double-shell disk model, but with a core radius of 8.9 nm
and a thickness of 3.74 nm (Figure S13B and Table S2). This
thickness corresponds to ten-layered TAPB-BTCA COF stacks
fully covered by surfactant. Importantly, these extracted values
were in good agreement with the overall size of the colloidal
particles as measured by DLS and cryo-TEM. It should be noted
that the formation of a compact surfactant layer around the COF
nanoparticles is crucial for their stabilization in the reaction
mixture, preventing further growth and flocculation. Accord-
ingly, SAXS data suggest that after an initial phase of lateral
growth by covalent polymerization, the increase in size of
TAPB-BTCA COF nanoparticles is essentially driven by the
π−π stacking of COF layers (Table S2). Coarse grained
molecular dynamics (CG-MD) simulations of single-, three-,
and ten-layered TAPB-BTCA COF particles were performed to
gain further insight into the forces driving the self-assembly
process. The simulations were run in water as well as hexadecane
to simulate the hydrophobic environment of the micellar
interior (see Supporting Information for further details about
the CG model and simulations).
Figure 2D−F present snapshots of the equilibrated assemblies

in water (see Figure S14 for the associated simulations in
hexadecane). Simulations confirmed the strong cooperativity in
the interaction between COF layers in both solvents, where the
total interaction energy per-COF layer (ΔETOT/N: accounting
for solute−solute + solute−solvent + solvent−solvent inter-
actions) becomes more and more favorable for the three and
ten-layered TAPB-BTCA COF particles. By comparing the two
cases, the aggregation was found stronger and more cooperative
in water than in hexadecane (Figure 2G, total energetic gain per-
COF layer), suggesting that the self-assembly and stacking of the
COF layers is globally more stabilized in water (higher
cooperativity) compared to hexadecane (lower cooperativity).
However, when considering only the solute−solute contribution
in this analysis, the data extracted from the simulations show that
the cooperativity, although always present, is rather similar in the
two cases (Figure S15). Altogether, these results indicate that
the additional driving force that makes the aggregation more
cooperative in water than in hexadecane can be imputed to
solvent effects. Themore the COF layers interact between them,

the less these interact with solvent molecules, which interact
more between them. The fact that this leads to a greater
advantage in water is consistent with the hydrophobic nature of
the COF layers. In other words, the driving force for aggregation
predominantly arises due to an increase in the water−water
interactions upon COF aggregation, that is, a signature of the
hydrophobic effect. In addition, MD simulations reveal a higher
flexibility of the COF single-layer, which deformed significantly
during the simulations (e.g., Figure 2D and Figure S14)
compared to the stacked systems (Figure 2E,F). These data
also explain the greater tendency of surfactant molecules to
interact with thicker assemblies (as measured by SAXS) since
rigid COF stacks have more extended hydrophobic patches
(e.g., pore walls) than rippled single-layers.
In addition to the importance of obtaining colloidal solutions

of sub-20 nm COF particles in water, the described method-
ology also offers new opportunities for particle processing.
Indeed, until now, a major limitation for the further
implementation of COFs outside of laboratory environments
has been their unprocessable nature.30 Here, we show that by
controlling the flocculation and aggregation of TAPB-BTCA
COF nanoparticles in the reaction mixture (through the
addition of ethanol), 2D and 3D TAPB-BTCA COF shapes
could be easily achieved. For example, films of TAPB-BTCA
COF(s) on the millimeter scale were prepared by confining a
concentrated reaction mixture into a homemade micro-
engineered clamp (Figure 3A) followed by evaporation of the
solvent. The concentrated reaction mixture was prepared by
exchanging water for ethanol (further details are provided in the
Supporting Information). We observed that highly uniform
freestanding films with controlled thickness in the range of 0.5 to
50 μmwere efficiently obtained via this approach (Figure 3B and
Figures S16 and S17). Alternatively, reducing the size of the
homemade microengineered clamp to squares of 500 μm lateral
size or even changing its 2D shape to 3Dmorphologies led to the
generation of smaller TAPB-BTCA COF(s) films (Figure S18)
or 3D octahedrons (Figure 3C and Supporting Information).
SEM analysis of these structures showed a nanoparticulated
texture similar to the one observed for TAPB-BTCA COF(s)
(Figure S19). These data indicate that the processing steps
allowed TAPB-BTCA COF(s) to be shaped into 2D and 3D
morphologies, with negligible reductions in the integrity of the

Figure 3. Processability of the reaction mixture. (A) Schematic illustration of the homemade microengineered clamp used to generate TAPB-BTCA
COF(s) films. (B) SEM image of the cross-section of a freestanding mm-sized film obtained using the setup shown in panel A. (C) SEM image of a
TAPB-BTCA COF(s) octahedron (500 μm edge). (D) Schematic illustration of the continuous 3D flow-focusing microfluidic device used to print
TAPB-BTCACOF(s). The reaction mixture was directly injected through inlet 1, while ethanol was introduced via inlet 2. (E) Photograph of “COF”
printed with TAPB-BTCA COF on a planar surface using the device shown in panel D.
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COF material. Additionally, PXRD patterns of these structures
were identical to those previously reported in the literature for
this COF (Figure S20A). Interestingly, the controlled diffusion
of ethanol to the reaction mixture through a 3D flow-focusing
microfluidic device allowed us to generate a processable COF
ink from the initial colloidal solution. Indeed, the laminar flow
conditions operating within such a device provided control over
the flocculation and aggregation of TAPB-BTCA COF
nanoparticles (Figure 3D). Accordingly, a direct printing of
TAPB-BTCA COF(s) onto surfaces was possible through the
tubing connected to the outlet of the microfluidic device (Figure
3E and Video S1). PXRD analysis of the printed structures
confirmed that TAPB-BTCA COF(s) was deposited (Figure
S20B).
To demonstrate the generality of our method, we prepared

another imine-based COF, namely Tz-COF,31 via the reaction
of 2,4,6-tris(4-aminophenyl)-1,3,5-triazine and BTCA in a
CTAB/SDS (97:3) mixture. SEM, DLS, and PXRD analyses
clearly confirmed the formation of Tz-COF particles with a size
distribution centered around 20 nm (Figures S21−S24).32
Permanent porosity was measured using BET analysis, with
results agreeing with previously reported values for the same
COF material (Figure S25).33 Finally, it is significant to note
that our method can be extended to MOFs. To demonstrate
such generality, we synthesized a prototypical MOF that
requires harsh conditions to crystallize, that is,MIL-100(Fe).17

In situ synchrotron X-ray diffraction measurements of the
homogeneous reaction mixture clearly confirmed the formation
of MIL-100(Fe) (Figure S26). Furthermore, DLS measure-
ments of drop-cast reaction mixtures indicated a particle size
distribution centered around 20 nm (Figure S27). To the best of
our knowledge, this is the smallest size reported for this
biodegradable and nontoxic MOF.34 After flocculation of the
colloid with ethanol, PXRD and BET analyses of the resulting
powder additionally confirmed the formation of MIL-100(Fe)
(Figure S28 and Figure S29, respectively). Surprisingly, and in
spite of the nanometer size of the generated MIL-100(Fe)
particles, the measured BET surface area was high (1068 m2

g−1).

■ CONCLUSION

In summary, we have demonstrated a mild procedure for the
preparation of stable aqueous colloidal solutions of crystalline
imine-linked COF nanoparticles assisted by micelles of a
catanionic surfactant mixture. The micellar medium provides
control over the growth of the COF crystallites, which allowed
us to reach the smallest size for COF particles among those
reported so far. Additionally, by a combination of experimental
and computational studies, we were able to shed light on the
mechanism and forces underlying the growth of such COF
colloids. Note that this mechanistic study is unprecedented for
imine-based COFs. Remarkably, the colloidal nature of the
formed imine-based COF nanoparticles enabled their process-
ing into 2D and 3D shapes as well as the generation of an ink for
their direct printing onto surfaces. Finally, to demonstrate the
generality of our method, we extended it to the preparation of
colloidal nanoparticles of other porous crystalline materials such
as MOFs. We foresee that the preparation of chemically stable
and easily processable imine-based COF colloids will open the
door to new applications of these materials, for example, in the
field of functional devices, due to improved integration
possibilities, or biomedicine, thanks to improved bioavailability.
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(19) de la Peña Ruigoḿez, A.; Rodríguez-San-Miguel, D.; Stylianou,
K. C.; Cavallini, M.; Gentili, D.; Liscio, F.; Milita, S.; Roscioni, O. M.;
Ruiz-Gonzaĺez, M. L.; Carbonell, C.; Maspoch, D.; Mas-Balleste,́ R.;
Segura, J. L.; Zamora, F. Direct On-Surface Patterning of a Crystalline
Laminar Covalent Organic Framework Synthesized at Room Temper-
ature. Chem. - Eur. J. 2015, 21 (30), 10666−10670.
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